Video Rain-Streaks Removal by Combining Data-Driven and Feature-Based Models

Author:

Islam Muhammad RafiqulORCID,Paul ManoranjanORCID

Abstract

Video analytics and computer vision applications face challenges when using video sequences with low visibility. The visibility of a video sequence is degraded when the sequence is affected by atmospheric interference like rain. Many approaches have been proposed to remove rain streaks from video sequences. Some approaches are based on physical features, and some are based on data-driven (i.e., deep-learning) models. Although the physical features-based approaches have better rain interpretability, the challenges are extracting the appropriate features and fusing them for meaningful rain removal, as the rain streaks and moving objects have dynamic physical characteristics and are difficult to distinguish. Additionally, the outcome of the data-driven models mostly depends on variations relating to the training dataset. It is difficult to include datasets with all possible variations in model training. This paper addresses both issues and proposes a novel hybrid technique where we extract novel physical features and data-driven features and then combine them to create an effective rain-streak removal strategy. The performance of the proposed algorithm has been tested in comparison to several relevant and contemporary methods using benchmark datasets. The experimental result shows that the proposed method outperforms the other methods in terms of subjective, objective, and object detection comparisons for both synthetic and real rain scenarios by removing rain streaks and retaining the moving objects more effectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object Detection in Pytorch Using Mask R-CNN;International Journal of Innovative Science and Research Technology (IJISRT);2024-06-27

2. Video Deraining Using the Visual Properties of Rain Streaks;IEEE Access;2022

3. Video Desnowing and Deraining via Saliency and Dual Adaptive Spatiotemporal Filtering;Sensors;2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3