Improving Pinus densata Carbon Stock Estimations through Remote Sensing in Shangri-La: A Nonlinear Mixed-Effects Model Integrating Soil Thickness and Topographic Variables

Author:

Han Dongyang1,Zhang Jialong2ORCID,Xu Dongfan3,Liao Yi4,Bao Rui5,Wang Shuxian6,Chen Shaozhi7

Affiliation:

1. Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091, China

2. Forestry College, Southwest Forestry University, Kunming 650224, China

3. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai Institute of EcoChongming (SIEC), Fudan University, Shanghai 200433, China

4. College of Mechanical and Electronic Engineering, Northwest Agriculture and Forestry University, Xianyang 712100, China

5. Institute of Southwest Survey and Planning, National Forestry and Grassland Administration, Kunming 650021, China

6. Remote Sensing Center of Yunnan Province, Kunming 650034, China

7. Chinese Academy of Forestry, Beijing 100091, China

Abstract

Forest carbon sinks are vital in mitigating climate change, making it crucial to have highly accurate estimates of forest carbon stocks. A method that accounts for the spatial characteristics of inventory samples is necessary for the long-term estimation of above-ground forest carbon stocks due to the spatial heterogeneity of bottom-up methods. In this study, we developed a method for analyzing space-sensing data that estimates and predicts long time series of forest carbon stock changes in an alpine region by considering the sample’s spatial characteristics. We employed a nonlinear mixed-effects model and improved the model’s accuracy by considering both static and dynamic aspects. We utilized ground sample point data from the National Forest Inventory (NFI) taken every five years, including tree and soil information. Additionally, we extracted spectral and texture information from Landsat and combined it with DEM data to obtain topographic information for the sample plots. Using static data and change data at various annual intervals, we built estimation models. We tested three non-parametric models (Random Forest, Gradient-Boosted Regression Tree, and K-Nearest Neighbor) and two parametric models (linear mixed-effects and non-linear mixed-effects) and selected the most accurate model to estimate Pinus densata’s above-ground carbon stock. The results showed the following: (1) The texture information had a significant correlation with static and dynamic above-ground carbon stock changes. The highest correlation was for large-window mean, entropy, and variance. (2) The dynamic above-ground carbon stock model outperformed the static model. Additionally, the dynamic non-parametric models and parametric models experienced improvements in prediction accuracy. (3) In the multilevel nonlinear mixed-effects models, the highest accuracy was achieved with fixed effects for aspect and two-level nested random effects for the soil and elevation categories. (4) This study found that Pinus densata’s above-ground carbon stock in Shangri-La followed a decreasing, and then, increasing trend from 1987 to 2017. The mean carbon density increased overall, from 19.575 t·hm−2 to 25.313 t·hm−2. We concluded that a dynamic model based on variability accurately reflects Pinus densata’s above-ground carbon stock changes over time. Our approach can enhance time-series estimates of above-ground carbon stocks, particularly in complex topographies, by incorporating topographic factors and soil thickness into mixed-effects models.

Funder

the Cooperative Forestry Science and Technology Project of Zhejiang Provincial Academy

Research on Key Technologies and Paths for Realizing the Value of Ecological Products under the Special Funds for Basic Scientific Research of Institutions of Public Welfare at Central Level

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3