Contrasting Altitudinal Patterns and Composition of Soil Bacterial Communities along Stand Types in Larix principis-rupprechtii Forests in Northern China

Author:

Niu Yajie12,Li Xin12,Wang Chuanxu12,Han Youzhi3,Wang Zhuo12,Yang Jing12

Affiliation:

1. Life Sciences Department, Yuncheng University, Yuncheng 044000, China

2. Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng 044000, China

3. College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Bacterial communities inhabiting the soil of mountain ecosystems perform critical ecological functions. Although several studies have reported the altitudinal distribution patterns of bacterial communities in warm-temperate mountain forests, our understanding of typical zonal vegetation dominated by Larix principis-rupprechtii Mayr (abbreviated as larch hereafter) and the understory elevation distribution patterns of soil bacterial communities is still limited. In this study, the Illumina NovaSeq 6000 sequencing platform was used to investigate the changes of surface and subsurface soil bacterial communities along an altitudinal gradient (from 1720 m to 2250 m) in larch forests in northern China. Altitude significantly affected the relative abundance of Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi (bacterial dominant phylum) and Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria (bacterial dominant classes). The diversity of bacterial communities showed a concomitant increase with altitude. The variations in available nitrogen and soil temperature content at different altitudes were the main factors explaining the bacterial community structures in pure stands and mixed stands, respectively. Altitude and the contents of soil organic carbon and soil organic matter were the main factors explaining the dominant phylum (taxonomy). Our results suggest that stand type has a greater effect on the structure and composition of soil bacterial communities than elevation and soil depth, and bacterial communities show divergent patterns along the altitudes, stand types, and soil profiles.

Funder

Shanxi Scientific and Technological Innovation Team of Halophiles Resources Utilization

Fundamental Research Program of Shanxi Province

National Key R & D Program of China

National Natural Science Youth Foundation of China

Science and Technology Innovation Project of Shanxi Higher Education Institution

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3