An Assessment Framework for Mapping the Air Purification Service of Vegetation at the Regional Scale

Author:

Liu Yu1,Zhao Wudong1,Zhang Liwei1ORCID,Li Xupu1ORCID,Peng Lixian2,Wang Zhuangzhuang3,Song Yongyong1,Jiao Lei1ORCID,Wang Hao1

Affiliation:

1. Department of Geography, School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China

2. School of Geographic Sciences, East China Normal University, Shanghai 200062, China

3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, CAS, Beijing 100085, China

Abstract

Efficiently mitigating the severe air pollution resulting from rapid progress is crucial for the sustainable development of the socio-ecological system. Recently, concerns about nature-based solutions have emerged in the research on the treatment of air pollution. Studies on the purification of PM2.5 using vegetation currently concentrate on the individual scale of tree species or urban vegetation, ignoring the regional scale, which could better assist ecological governance. Therefore, taking the Fenwei Plain of China as the study area, an assessment framework of the air purification service’s spatial distribution reflecting regional vegetation was constructed. The dry deposition model and GeoDetector were used to quantify the spatial-temporal pattern and explore natural driving factors on the removal of PM2.5. The results showed that (1) the PM2.5 purification services offered by various types of vegetation exhibit notable variations. The average removal rates of PM2.5 by vegetation were 0.186%, 0.243%, and 0.435% in 2000, 2010, and 2021, respectively. (2) Meanwhile, a wide range of spatial mismatch exists between the PM2.5 concentration and PM2.5 removal. Insufficient supply regions of PM2.5 purification services account for 50% of the Fenwei Plain. (3) PM2.5 removal was strongly influenced by the types of vegetation and the Normalized Vegetation Index (NDVI), followed by the Digital Elevation Model (DEM), and less affected by meteorological factors; a strong joint effect was shown among the factors. The findings in this research provide a new perspective on regional air pollution management at the regional scale.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

National Natural Science Foundation of China

Excellent Graduate Training Program of Shaanxi Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3