A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications?

Author:

Ruescas-Nicolau Ana V.1ORCID,Medina-Ripoll Enrique1ORCID,de Rosario Helios1ORCID,Sanchiz Navarro Joaquín1ORCID,Parrilla Eduardo1ORCID,Juan Lizandra María Carmen2ORCID

Affiliation:

1. Instituto de Biomecánica-IBV, Universitat Politècnica de València, Edifici 9C, Camí de Vera s/n, 46022 Valencia, Spain

2. Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Edifici 1F, Camí de Vera, s/n, 46022 Valencia, Spain

Abstract

In biomechanics, movement is typically recorded by tracking the trajectories of anatomical landmarks previously marked using passive instrumentation, which entails several inconveniences. To overcome these disadvantages, researchers are exploring different markerless methods, such as pose estimation networks, to capture movement with equivalent accuracy to marker-based photogrammetry. However, pose estimation models usually only provide joint centers, which are incomplete data for calculating joint angles in all anatomical axes. Recently, marker augmentation models based on deep learning have emerged. These models transform pose estimation data into complete anatomical data. Building on this concept, this study presents three marker augmentation models of varying complexity that were compared to a photogrammetry system. The errors in anatomical landmark positions and the derived joint angles were calculated, and a statistical analysis of the errors was performed to identify the factors that most influence their magnitude. The proposed Transformer model improved upon the errors reported in the literature, yielding position errors of less than 1.5 cm for anatomical landmarks and 4.4 degrees for all seven movements evaluated. Anthropometric data did not influence the errors, while anatomical landmarks and movement influenced position errors, and model, rotation axis, and movement influenced joint angle errors.

Funder

Instituto Valenciano de Competitividad Empresarial (IVACE) and Valencian Regional Government

Publisher

MDPI AG

Reference61 articles.

1. The Quantification of Low Back Disorder Using Motion Measures. Methodology and Validation;Marras;Spine,1999

2. A Three-dimensional Non-invasive Study of Head Flexion and Extension in Young Non-patient Subjects;Ferrario;J. Oral Rehabil.,1997

3. A 3D Kinematic Method to Evaluate Cervical Spine Voluntary Movements in Humans;Bulgheroni;Funct. Neurol.,1998

4. Biomechanics of Human Movement and Its Clinical Applications;Lu;Kaohsiung J. Med. Sci.,2012

5. Clinical Gait Analysis: A Review;Whittle;Hum. Mov. Sci.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3