The Perturbation of the Guadalupian Marine Environment Triggered by Early-Stage Eruption of the Emeishan Large Igneous Province: Rare Earth Element and Sr-Nd Isotope Evidence from Zunyi Manganese Deposit, South China

Author:

Yan Hao12,Pi Daohui1,Xu Lingang3,Sun Kai3

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Resources, China University of Geosciences, Wuhan 430074, China

2. Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China

3. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

Abstract

Pure marine chemical sediments are archives of geochemical proxies for the composition of seawater and may provide information about the ancient hydrosphere–atmosphere system. The early stage of the Emeishan large igneous province (ELIP) was characterized by the subaqueous eruption of mafic igneous rocks around the J. altudaensis zone of the Capitanian Stage that has been proposed to have contributed to the Guadalupian mass extinction. However, detailed mechanisms and the impact of the eruption on the Guadalupian marine environment have yet to be assessed. Here, to examine the Guadalupian marine environment, we studied major and trace element concentrations, particularly rare earth element and yttrium data, along with high-precision Sr-Nd isotope ratios, of three types of Mn ores (i.e., clastic, massive, and oolitic) and siliceous limestones from the Zunyi Mn deposit in South China formed following the early-stage eruption of the ELIP. Our results indicate that the clastic Mn ores contain notable detrital mafic aluminosilicates. In contrast, the massive and oolitic Mn ores and siliceous limestones preserved the pristine geochemical signatures of the Middle–Late Permian seawater characterized by distinctly low (87Sr/86Sr)i and high εNd(t) values. These data indicate a strong impact of the early-stage submarine eruptions of the ELIP on the marine environment in South China and worldwide, likely through intensive seawater–rock interaction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3