Study on the Mechanism and Prevention of Frequent Mine Seismic Events in Goaf Mining under a Multi-Layer Thick Hard Roof: A Case Study

Author:

Wang Bo1234ORCID,Feng Guorui13,Gao Zhongxiang2,Ma Junpeng2,Zhu Sitao4ORCID,Bai Jinwen13,Li Zhu13,Wu Wenda13

Affiliation:

1. College of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China

2. Yankuang Energy Group Co., Ltd., Jining 273500, China

3. Key Laboratory of Shanxi Province for Mine Rock Strata Control and Disaster Prevention, Taiyuan 030024, China

4. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Mine seismic events are an inevitable dynamic phenomenon occurring in deep mines. A scientific and rational method is needed to evaluate and understand mine seismicity and its induced disasters. In the Ordos mining area of North China, multiple groups of thick hard-bedded sandstone formations commonly exist in the overlying strata of Jurassic coal seams. In recent years, frequent mine seismic events in many large mines of Ordos have resulted in suspended or limited production, which seriously threatens the safe and efficient operation of 10-million-ton modern mines in China. Therefore, taking the frequent occurrence of mine seismic events in the mining process of goaf working face with a multi-layer thick hard roof in Ordos mine as the research background, this study investigated the mechanism and prevention of mine seismic in goaf working face with the methods of case study, theoretical analysis and field monitoring. The following conclusions are made: when the goaf working face is mined, an “advanced and lateral” L-form roof forms under the coupled influence of the lateral suspension plate formed above the upper working face and the roof of the working face. Due to the common influence from “advanced and lateral” L-form roof activation, the gradually breaking multi-layer thick hard roof, thick hard roof group bending and prying effects, in addition to excessively fast or uneven mining speed, mine seismic events will occur frequently when the exceedance warning index (EWI) is breeched. On this basis, coordinated blasting to break the roof along two roadways and within the working face is put forward as a measure with the purpose of preventing and controlling mine seismic events, and a robust effect on mine seismic reduction and disaster prevention is obtained in field application. The research results can serve as a reference for the development and application of mine seismic mechanism and blasting vibration reduction technology on the working face where there is a multi-layer thick hard roof, thereby supporting a strategy of promoting the resource development and energy security of deep mines.

Funder

National Natural Science Foundation of China

Distinguished Youth Funds of National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3