Affiliation:
1. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, Mianyang 644000, China
2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
3. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China
4. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract
The Xiongcun Cu–Au ore district is in the southern middle Gangdese Metallogenic Belt, Tibet, and formed during Neo-Tethyan oceanic subduction. The Xiongcun ore district mainly comprises two deposits, the No. I and No. II deposits, which were formed by two individual mineralization events according to deposit geology and Re–Os isotopic dating of molybdenite. The No. I deposit is similar to a reduced porphyry copper–gold deposit, given the widespread occurrence of primary and/or hydrothermal pyrrhotite and common CH4-rich and rare N2-rich fluid inclusions. The No. II deposit, similar to classic oxidized porphyry copper–gold deposits, contains highly oxidized minerals, including magnetite, anhydrite, and hematite. The halogen chemistry of the ore-forming fluid from the No. I and No. II deposits is still unclear. Biotite geochemistry with halogen contents was used to investigate the differences in ore-forming fluid between the No. I and No. II deposits. Hydrothermal biotite from the No. I deposit, usually intergrown with sphalerite, is Mg-rich and classified as phlogopite and Mg-biotite, and hydrothermal biotite from the No. II deposit is classified as Mg-biotite. Hydrothermal biotite from the No. I deposit has significantly higher SiO2, MnO, MgO, F, Li, Sc, Zn, Rb, Tl, and Pb contents and lower Al2O3, FeOtot, Cl, Ba, Cr, V, Co, Ni, Y, Sr, Zr, Th, and Cu contents than the biotite from the No. II deposit. Hydrothermal biotites from the No. I and No. II deposits yield temperatures ranging from 230 °C to 593 °C and 212 °C to 306 °C, respectively. The calculated oxygen fugacity and fugacity ratios indicate that the hydrothermal fluid of the No. I deposit has a higher F content, oxygen fugacity, and log(fHF/fHCl) value and a lower log(fH2O/fHF) value than the hydrothermal fluid from the No. II deposit. The biotite geochemistry shows that the No. I and No. II deposits formed from different hydrothermal fluids. The hydrothermal fluid of the No. I deposit was mixed with meteoric waters containing organic matter, resulting in a decrease in oxygen fugacity and more efficient precipitation of gold. The No. I and No. II deposits were formed by a Cl-rich hydrothermal system conducive to transporting Cu and Au. The decreasing Cl, oxygen fugacity, and temperature may be the key factors in Cu and Au precipitation. Biotite geochemistry allows a more detailed evaluation of the halogen chemistry of hydrothermal fluids and their evolution within porphyry Cu systems.
Funder
National Key R&D Program of China
Natural Science Foundation of Sichuan
Research Fund of Southwest University of Science and Technology
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献