Petrogenesis of Early Cretaceous Granitoids in the Qingdao Area, Jiaodong Peninsula: Constraints from Zircon U–Pb Ages, Geochemistry and Sr–Nd–Hf Isotopes

Author:

Ding Yi1,Bu Xuejiao1,Zhao Hong23,Zhong Shihua1ORCID,Liu Ming1

Affiliation:

1. Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

2. Key Laboratory of Rhenium-Osmium Isotopic Geochemistry, National Research Center for Geoanalysis CAGS, Beijing 100037, China

3. Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China

Abstract

The Jiaodong Peninsula is located on the junction of the North China Craton (NCC) and South China Block (SCB), where Mesozoic igneous rocks are widespread. However, the petrogenesis and tectonic settings for these Mesozoic igneous rocks are still controversial. In this study, we present detailed geochronological and geochemical analyses of quartz monzonite, monzogranite, syenogranite, and alkali feldspar granite in the Qingdao area, east of the Jiaodong Peninsula, to constrain their petrogenesis and tectonic setting. Zircon U–Pb dating shows that they mainly formed in the Early Cretaceous (120.5–113.1 Ma). Quartz monzonite exhibits adakitic geochemical features (e.g., low Y and high Sr/Y). Combined with its Sr–Nd–Hf isotopic features, we suggest that quartz monzonite may have been produced by the partial melting of phengite-bearing eclogites at the base of the thickened continental crust of the NCC. In contrast, monzogranite and syenogranite exhibit I-type granite affinities, whereas alkali feldspar granite exhibits features consistent with A-type granite. The strongly negative εHf(t) and εNd(t) values of the I-type rocks indicate that they were most likely produced through partial melting of granitic gneisses from the NCC, whereas A-type magmas may be formed through fractional crystallization from the non-adakitic granitic magma. Combined with previous studies, we suggest that these granitoids were formed in a lithospheric extensional setting via the rollback of the subducted Paleo-Pacific slab, which resulted in the reworking of the deep crust beneath the Sulu ultrahigh-pressure metamorphic belt.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3