Machine Learning and EPCA Methods for Extracting Lithology–Alteration Multi-Source Geological Elements: A Case Study in the Mining Evaluation of Porphyry Copper Ores in the Gondwana Metallogenic Belt

Author:

Liu Chunhui1ORCID,Liu Xingyu1,Hou Man1,Wu Sensen23ORCID,Wang Luoqi23,Feng Jie23,Qiu Chunxia1

Affiliation:

1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. School of Earth Sciences, ZheJiang University, Hangzhou 310027, China

3. Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China

Abstract

The location and development of porphyry copper deposits is a key issue for the mining industry. In this study, the Gondwana metallogenic belt was chosen as the study area to compare multiple methods for extracting multi-source geological elements to maximize the accuracy of the datasets used for mining evaluation and to use them to assess porphyry copper mineability. By comparison, a support vector machine (SVM) with an overall classification accuracy of 97.6573% and a Kappa coefficient of 0.9806 was used to extract the lithological distribution of the study area. Spectral feature-enhanced principal component analysis (EPCA) was combined with ASTER images to extract alteration information, with significant improvements in spatial aggregation and overall area compared to other alteration extraction methods, while a hierarchical alteration interpolation method was proposed to overcome the limitations of relying solely on remote sensing images to obtain surface alteration information and qualitatively extend deep alteration information. In addition, by overlaying various geoscientific factors affecting copper mineralization and mining, a Pearson correlation analysis is carried out in conjunction with currently proven or mined copper occurrences, and a weight of evidence approach is used to classify the study area into four mineability classes, which is important for narrowing down potential target areas for mineral exploration and assessing their mining value while contributing to an in-depth understanding of the role of geological elements in mineralization and development.

Funder

National Key Research and Development Program of China

Provincial Key R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3