Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems

Author:

Manusov Vadim,Matrenin PavelORCID,Nazarov Muso,Beryozkina SvetlanaORCID,Safaraliev MurodbekORCID,Zicmane IngaORCID,Ghulomzoda AnvariORCID

Abstract

Predicting the variability of wind energy resources at different time scales is extremely important for effective energy management. The need to obtain the most accurate forecast of wind speed due to its high degree of volatility is particularly acute since this can significantly improve the planning of wind energy production, reduce costs and improve the use of resources. In this study, a method for predicting the speed of wind flow in an isolated power system of the Gorno-Badakhshan Autonomous Oblast (GBAO), based on the use of a neural network with a learning process control algorithm, is proposed. Predicting is performed for four seasons of the year, based on hourly retrospective meteorological data of wind speed observations. The obtained wind speed average error forecasting ranged from 20–28% for a day ahead. The prediction results serve as a basis for optimizing the energy consumption of individual generating consumers to minimize their financial and technical costs. In addition, this study takes into account the possibility of exporting electricity to a neighboring country as an additional income line for the isolated GBAO power system during periods of excess energy from hydropower plants (March–September), which is a systematic vision of solving the problem of improving energy efficiency in the conditions of autonomous power supply.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3