Monitoring of Discolored Trees Caused by Pine Wilt Disease Based on Unsupervised Learning with Decision Fusion Using UAV Images

Author:

Wan Jianhua,Wu Lujuan,Zhang Shuhua,Liu ShanweiORCID,Xu MingmingORCID,Sheng HuiORCID,Cui Jianyong

Abstract

Pine wilt disease (PWD) has caused severe damage to ecosystems worldwide. Monitoring PWD is urgent due to its rapid spread. Unsupervised methods are more suitable for the monitoring needs of PWD, as they have the advantages of being fast and not limited by samples. We propose an unsupervised method with decision fusion that combines adaptive threshold and Lab spatial clustering. The method avoids the sample problem, and fuses the strengths of different algorithms. First, the modified ExG-ExR index is proposed for adaptive threshold segmentation to obtain an initial result. Then, k-means and Fuzzy C-means in Lab color space are established for an iterative calculation to achieve two initial results. The final result is obtained from the three initial extraction results by the majority voting rule. Experimental results on unmanned aerial vehicle images in the Laoshan area of Qingdao show that this method has high accuracy and strong robustness, with the average accuracy and F1-score reaching 91.35% and 0.8373, respectively. The method can help provide helpful information for effective control and tactical management of PWD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3