Gene-Editing for Production Traits in Forest Trees: Challenges to Integration and Gene Target Identification

Author:

Strauss Steven H.ORCID,Slavov Gancho T.,DiFazio Stephen P.ORCID

Abstract

Gene-editing methods, particularly CRISPR, provide extraordinary opportunities for scientific insights and applications in the life sciences. However, the prospects for near-term applications to commercial forestry appear limited. Loss-of-function phenotypes that can be imparted by mutation of one or a few conserved genes offer the best opportunities in the near term. For traits with complex inheritance, there is insufficient science to guide gene-editing efforts, and Genome-Wide Association Studies (GWASs), without strong validation, typically cannot provide high-confidence gene identification. Other obstacles include the difficulty of transformation in many important genotypes, difficulties of transient editing or complete editor removal, and complexity of use in breeding programs. Gene edits that cause loss-of-function traits will generally be recessive, and thus not be expressed among outbred progeny, so vegetative propagules (clones) will be required in most cases. There are also important societal constraints, such as strict regulations for field trials in most countries, and market certification systems that do not allow any kinds of recombinant DNA-modified trees, including those produced by gene-editing, in certified production forests. We conclude that gene-editing applications will be extremely limited for the foreseeable future (i.e., at least 10 years). Nevertheless, gene-editing is a very powerful scientific tool that will be widely used by molecular forest scientists and can lead to important applications in the longer term, if research advances are made on key fronts and regulatory and market obstacles greatly attenuated.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3