Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network

Author:

Islam M. M. ManjurulORCID,Kim Jong-MyonORCID

Abstract

The visual inspection of massive civil infrastructure is a common trend for maintaining its reliability and structural health. However, this procedure, which uses human inspectors, requires long inspection times and relies on the subjective and empirical knowledge of the inspectors. To address these limitations, a machine vision-based autonomous crack detection method is proposed using a deep convolutional neural network (DCNN) technique. It consists of a fully convolutional neural network (FCN) with an encoder and decoder framework for semantic segmentation, which performs pixel-wise classification to accurately detect cracks. The main idea is to capture the global context of a scene and determine whether cracks are in the image while also providing a reduced and essential picture of the crack locations. The visual geometry group network (VGGNet), a variant of the DCCN, is employed as a backbone in the proposed FCN for end-to-end training. The efficacy of the proposed FCN method is tested on a publicly available benchmark dataset of concrete crack images. The experimental results indicate that the proposed method is highly effective for concrete crack classification, obtaining scores of approximately 92% for both the recall and F1 average.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3