ClusterMap Building and Relocalization in Urban Environments for Unmanned Vehicles

Author:

Pan Zhichen,Chen HaoyaoORCID,Li Silin,Liu Yunhui

Abstract

Map building and map-based relocalization techniques are important for unmanned vehicles operating in urban environments. The existing approaches require expensive high-density laser range finders and suffer from relocalization problems in long-term applications. This study proposes a novel map format called the ClusterMap, on the basis of which an approach to achieving relocalization is developed. The ClusterMap is generated by segmenting the perceived point clouds into different point clusters and filtering out clusters belonging to dynamic objects. A location descriptor associated with each cluster is designed for differentiation. The relocalization in the global map is achieved by matching cluster descriptors between local and global maps. The solution does not require high-density point clouds and high-precision segmentation algorithms. In addition, it prevents the effects of environmental changes on illumination intensity, object appearance, and observation direction. A consistent ClusterMap without any scale problem is built by utilizing a 3D visual–LIDAR simultaneous localization and mapping solution by fusing LIDAR and visual information. Experiments on the KITTI dataset and our mobile vehicle illustrates the effectiveness of the proposed approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robot Localization and Reconstruction based on 3D Point Cloud;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

2. A systematic literature review on long‐term localization and mapping for mobile robots;Journal of Field Robotics;2023-04-11

3. Pole-like Objects Mapping and Long-Term Robot Localization in Dynamic Urban Scenarios;2021 IEEE International Conference on Robotics and Biomimetics (ROBIO);2021-12-27

4. Lane Detection Algorithm Using LRF for Autonomous Navigation of Mobile Robot;Applied Sciences;2021-07-05

5. 3-D Dense Rangefinder Sensor With a Low-Cost Scanning Mechanism;IEEE Transactions on Instrumentation and Measurement;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3