Potential for Building Façade-Integrated Solar Thermal Collectors in a Highly Urbanized Context

Author:

Frattolillo AndreaORCID,Canale LauraORCID,Ficco Giorgio,Mastino Costantino C.,Dell’Isola MarcoORCID

Abstract

Development of technologies, materials, support systems, and coatings has made the integration of solar thermal systems into the building envelope increasingly possible. Solar thermal collectors can either be directly integrated, substituting conventional roof or façade covering materials, or constitute independent devices added to a roof or façade structure. Aimed at estimating the real effectiveness of building-integrated solar systems for domestic heat water (DHW) production or for heating integration, when horizontal or inclined pitches on buildings are not applicable, the authors analyze a case study with different scenarios, taking into account the issues connected to a highly urbanized context in the Mediterranean climate. A GIS model was used for estimating the energy balance, while the real producibility of the simulated systems was calculated by a dynamic hourly simulation model, realized according to ISO 52016. The savings in terms of primary energy needs obtained by installing solar thermal systems on the facade are presented, and the differences between the cases in which the system is used for DHW production only and for space heating too are distinguished and discussed. The evaluated potential is quantified in the absence of roof collectors, despite their high potential in the Mediterranean region, in order to better appreciate the effects induced by integrated facade systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3