Experimental Study of Three-Bed Adsorption Chiller with Desalination Function

Author:

Sztekler KarolORCID,Kalawa Wojciech,Nowak Wojciech,Mika LukaszORCID,Gradziel Slawomir,Krzywanski JaroslawORCID,Radomska EwelinaORCID

Abstract

Energy efficiency is one of the most important topics nowadays. It is strictly related to energy demand, energy policy, environmental pollution, and economic issues. Energy efficiency can be increased and operating costs reduced by using waste heat from other processes. One of the possibilities is to use sorption chillers to produce chilled water and desalinated water. Low-temperature waste heat is not easy to utilize because of the low energy potential. Using adsorption chillers in low-temperature conditions allows utilizing waste heat and producing useful products in many regions of the world. The paper presents the results of an experimental study carried out on a three-bed adsorption chiller with desalination function, using silica gel and water as a working pair. The laboratory test stand included one evaporator, one condenser, and three separate tanks for water, desalinated water, and brine, respectively. The test stands scheme and description were presented. All results were obtained during several test hours with stable temperature conditions in the range of 57–85 °C for the heating water. It is found that the Coefficient of Performance (COP) increased from 0.20 to 0.58 when the heating water temperature increased from 57 to 85 °C. A similar finding is reported for Specific Cooling Power (SCP), which increased from 27 to 160 W/kg as the heating water temperature increased from 57 to 85 °C. It can be concluded that the heating water temperature strongly impacts the performance of the adsorption chiller.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. European Union Energyhttps://europa.eu/european-union/topics/energy_pl

2. European Union, Paris Agreementhttps://ec.europa.eu/clima/policies/international/negotiations/paris_en

3. Energy Statistics in 2016 and 2017,2018

4. Prognoza Zapotrzebowania Na Paliwa I Energię Do 2030 Roku;Agencja Rynku Energii,2009

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3