Abstract
Several experimental techniques involving dynamic electrical variables are used to study the complex behaviour of polymer electrolyte membrane fuel cells in order to improve performance and durability. Among them, electrochemical impedance spectroscopy (EIS) is one of the most employed methods. Like any frequency response analysis (FRA) methodology, EIS enables one to separate the contribution of many processes to performance losses. However, it fails to identify processes with a similar time constant and the interpretation of EIS spectra is often ambiguous. In the last decade, alternative FRA methodologies based on non-electrical inputs and/or outputs have been developed. These studies were mainly driven by requirements for a better diagnosis of polymer electrolyte membrane fuel cells (PEMFCs) faulty operation conditions as well as better component and material design. In this contribution, a state-of-the-art EIS and novel FRA techniques for PEMFC diagnosis are summarised. First, common degradation mechanisms and their causes are discussed. A mathematical framework based on linear system theory of time invariant systems is described in order to explain the theoretical implications of the use of different input/output configurations. In relation to this, the concepts and potential are depicted as well as the problematic aspects and future prospective of these diagnostic approaches.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献