Polymer Electrolyte Fuel Cell Degradation Mechanisms and Their Diagnosis by Frequency Response Analysis Methods: A Review

Author:

Sorrentino Antonio,Sundmacher Kai,Vidakovic-Koch TanjaORCID

Abstract

Several experimental techniques involving dynamic electrical variables are used to study the complex behaviour of polymer electrolyte membrane fuel cells in order to improve performance and durability. Among them, electrochemical impedance spectroscopy (EIS) is one of the most employed methods. Like any frequency response analysis (FRA) methodology, EIS enables one to separate the contribution of many processes to performance losses. However, it fails to identify processes with a similar time constant and the interpretation of EIS spectra is often ambiguous. In the last decade, alternative FRA methodologies based on non-electrical inputs and/or outputs have been developed. These studies were mainly driven by requirements for a better diagnosis of polymer electrolyte membrane fuel cells (PEMFCs) faulty operation conditions as well as better component and material design. In this contribution, a state-of-the-art EIS and novel FRA techniques for PEMFC diagnosis are summarised. First, common degradation mechanisms and their causes are discussed. A mathematical framework based on linear system theory of time invariant systems is described in order to explain the theoretical implications of the use of different input/output configurations. In relation to this, the concepts and potential are depicted as well as the problematic aspects and future prospective of these diagnostic approaches.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3