Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger

Author:

Lyu WeidongORCID,Pu Hefu,Chen Jiannan (Nick)

Abstract

This study presents a novel heat exchanger configuration, called a deeply penetrating U-shaped configuration, for energy piles. The outlet water temperature, temperature variation along the tube, and heat transfer rate are simulated and computed using Comsol Multiphysics software. The simulations are for the cooling mode. The proposed configuration is compared with traditional U-shaped and W-shaped configurations to prove its superiority. The thermal performance of the pile group is compared with that of a single pile to investigate the effects of the pile group on the heat transfer. A parametric analysis is performed to investigate the effects of several important parameters (i.e., pile spacing, pile diameter, soil type, and thermal parameters) on the heat transfer performance of an energy pile group with the proposed deeply penetrating U-shaped configuration. The results indicate that the corner pile indicates a nonnegligible heat transfer rate 6.8% and 9.9% higher than the central pile in quincuncial and squared arrangements. Purely from the standpoint of thermal performance, the pile spacing is recommended to be more than 6.8 times the pile diameter to reduce the influence of the pile group on the heat transfer capacity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3