Integrations between Autonomous Systems and Modern Computing Techniques: A Mini Review

Author:

Chen Jerry,Abbod MaysamORCID,Shieh Jiann-Shing

Abstract

The emulation of human behavior for autonomous problem solving has been an interdisciplinary field of research. Generally, classical control systems are used for static environments, where external disturbances and changes in internal parameters can be fully modulated before or neglected during operation. However, classical control systems are inadequate at addressing environmental uncertainty. By contrast, autonomous systems, which were first studied in the field of control systems, can be applied in an unknown environment. This paper summarizes the state of the art autonomous systems by first discussing the definition, modeling, and system structure of autonomous systems and then providing a perspective on how autonomous systems can be integrated with advanced resources (e.g., the Internet of Things, big data, Over-the-Air, and federated learning). Finally, what comes after reaching full autonomy is briefly discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning, Mechatronics, and Stretch Forming: A History of Innovation in Manufacturing Engineering;Machines;2024-03-07

2. A New Technology Rises: Non-Human Knowledge Workers and Decision-Making in a System of Complex Systems;2023 18th Annual System of Systems Engineering Conference (SoSe);2023-06-14

3. Simulation of a real-time dual-loop control system for high-quality personalized cardiopulmonary resuscitation;Biomedical Signal Processing and Control;2023-05

4. Autonomous System with Cyber-Physical Integrating Features on Public Utility of Chemical Fiber Factory;Communications in Computer and Information Science;2023

5. Autonomy as Shared Asset of CPS Architectures;Subject-Oriented Business Process Management. Models for Designing Digital Transformations;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3