Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate

Author:

Madhukesh Javali Kotresh1ORCID,Sarris Ioannis E.2ORCID,Prasannakumara Ballajja Chandrappa1ORCID,Abdulrahman Amal3

Affiliation:

1. Department of Studies in Mathematics, Davangere University, Davangere 577007, India

2. Department of Mechanical Engineering, University of West Attica, 12244 Athens, Greece

3. Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia

Abstract

This article comprehensively investigates the thermal performance of a ternary hybrid nanofluid flowing in a permeable inclined cylinder/plate system. The study focuses on the effects of key constraints such as the inclined geometry, permeable medium, and heat source/sink on the thermal distribution features of the ternary nanofluid. The present work is motivated by the growing demand for energy-efficient cooling systems in various industrial and energy-related applications. A mathematical model is developed to describe the system’s fluid flow and heat-transfer processes. The PDEs (partial differential equations) are transformed into ODEs (ordinary differential equations) with the aid of suitable similarity constraints and solved numerically using a combination of the RKF45 method and shooting technique. The study’s findings give useful insights into the behavior of ternary nanofluids in permeable inclined cylinder/plate systems. Further, important engineering coefficients such as skin friction and Nusselt numbers are discussed. The results show that porous constraint will improve thermal distribution but declines velocity. The heat-source sink will improve the temperature profile. Plate geometry shows a dominant performance over cylinder geometry in the presence of solid volume fraction. The rate of heat distribution in the cylinder will increase from 2.08% to 2.32%, whereas in the plate it is about 5.19% to 10.83% as the porous medium rises from 0.1 to 0.5.

Funder

Research Group Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3