Comparative Risk Assessment of a Hydrogen Refueling Station Using Gaseous Hydrogen and Formic Acid as the Hydrogen Carrier

Author:

Kim Changsoo1ORCID,Lee Younggeun2,Kim Kyeongsu3ORCID

Affiliation:

1. Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

2. System Research Center, Wezon Co., Ltd., Seoul 06245, Republic of Korea

3. Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea

Abstract

To realize a hydrogen economy, many studies are being conducted regarding the development and analysis of hydrogen carriers. Recently, formic acid has been receiving attention as a potential hydrogen carrier due to its high volumetric energy density and relatively safe characteristics. However, hydrogen refueling systems using formic acid are very different from conventional hydrogen refueling stations, and quantitative risks assessments need to be conducted to verify their safe usage. In this study, a comparative safety analysis of a formic acid hydrogen refueling station (FAHRS) and a gaseous hydrogen refueling station (GHRS) was conducted. Since there is no FAHRS under operation, a process simulation model was developed and integrated with quantitative risk assessment techniques to perform safety analysis. Results of the analysis show that the FAHRS poses less risk than the GHRS, where the vapor cloud explosion occurring in the buffer tank is of greatest consequence. A GHRS poses a greater risk than an FAHRS due to the high pressure required to store hydrogen in the tube trailer. The mild operating conditions required for storage and dehydrogenation of formic acid contribute to the low risk values of an FAHRS. For risk scenarios exceeding the risk limit, risk mitigation measures were applied to design a safe process for GHRS. The results show that the installation of active safety systems for the GHRS allow the system to operate within acceptable safety regions.

Funder

the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3