Enhanced Performance of Combined Photovoltaic–Thermoelectric Generator and Heat Sink Panels with a Dual-Axis Tracking System

Author:

Utomo Bagus Radiant12,Sulistyanto Amin2,Riyadi Tri Widodo Besar2ORCID,Wijayanta Agung Tri13

Affiliation:

1. Research Group of Sustanable Thermofluids, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia

2. Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Jl. A. Yani Tromol Pos 1 Pabelan, Kartasura, Surakarta 57102, Indonesia

3. Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutarmi 36A, Kentingan, Surakarta 57126, Indonesia

Abstract

The photovoltaic panel has become the most promising alternative technology for energy demand. Solar trackers have been used to improve the efficiency of a photovoltaic panel to maximize the sun’s exposure. In high temperatures, however, the photovoltaic efficiency is significantly reduced. This study observes photovoltaic/thermoelectric generator performance driven by a dual-axis solar tracking system. A photovoltaic/thermoelectric generator panel was built and equipped with angle and radiation sensors. A microcontroller processes the sensor signal and drives the motor to follow the sun’s movement in two-axis directions. Thermocouples are mounted on the photovoltaic and thermoelectric generator surfaces to monitor the temperature. The result shows that the temperature of the photovoltaic/thermoelectric generator is lower than that of the photovoltaic one. However, a contradiction occurred in the output power. The efficiency of the combined photovoltaic/thermoelectric generator was 13.99%, which is higher than the photovoltaic panel at 10.64% and the thermoelectric generator at 0.2%. The lower temperature in the photovoltaic/thermoelectric generator is responsible for increasing its performance. Although the thermoelectric generator contributes modest efficiency, its role in reducing the temperature is essential. Analyses of some cooling techniques for photovoltaic panels prove that the combined thermoelectric generator and heat sink improves photovoltaic performance with simplified technology.

Funder

facilities in the Research Group of Sustainable Thermofluids, Universitas Sebelas Maret, Indonesia

Institute of Research and Innovation, Universitas Muhammadiyah Surakarta, Indonesia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3