Microbial Fuel Cells as a Promising Power Supply for Implantable Medical Devices

Author:

Oliveira Vânia B.12ORCID

Affiliation:

1. CEFT-Transport Phenomena Research Centre, Faculty of Engineering, University of Porto, Rua Doutor Roberto Frias, s/n, 4200-465 Porto, Portugal

2. ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Doutor Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract

The Future of Energy is focused on the consolidation of new energy technologies. Among them, Fuel Cells (FCs) are on the Energy Agenda due to their potential to reduce the demand for fossil fuel and greenhouse gas emissions, their higher efficiency (as fuel cells do not use combustion, their efficiency is not linked to their maximum operating temperature) and simplicity and absence of moving parts. Additionally, low-power FCs have been identified as the target technology to replace conventional batteries in portable applications, which can have recreational, professional, and military purposes. More recently, low-power FCs have also been identified as an alternative to conventional batteries for medical devices and have been used in the medical field both in implantable devices and as micro-power sources. The most used power supply for implantable medical devices (IMD) is lithium batteries. However, despite its higher lifetime, this is far from enough to meet the patient’s needs since these batteries are replaced through surgeries. Based on the close synergetic connection between humans and microorganisms, microbial fuel cells (MFCs) were targeted as the replacement technology for batteries in IMD since they can convert the chemical energy from molecules presented in a living organism into electrical energy. Therefore, MFCs offer the following advantages over lithium batteries: they do not need to be replaced, avoiding subjecting IMD users to different surgeries and decreasing medical costs; they do not need external recharging as they operate as long as the fuel is supplied, by the body fluids; they are a more environmentally friendly technology, decreasing the carbon dioxide and other greenhouse gases emissions resulting from the utilization of fossil fuels and the dependency on fossil fuels and common batteries. However, they are complex systems involving electrochemical reactions, mass and charge transfer, and microorganisms, which affect their power outputs. Additionally, to achieve the desired levels of energy density needed for real applications, an MFC system must overcome some challenges, such as high costs and low power outputs and lifetime.

Funder

FCT/MCTES

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3