Increasing Growth of Renewable Energy: A State of Art

Author:

Guchhait Rekha1ORCID,Sarkar Biswajit12ORCID

Affiliation:

1. Department of Industrial Engineering, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea

2. Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India

Abstract

The growth of renewable energy actively takes part in decarbonizing the fossil-fuel-based energy system. It reduces carbon emissions, carbon footprint, and greenhouse gas emissions and increases clean energy. The usage of renewable resources reduces and solves several problems, such as increasing temperature, carbon footprint, greenhouse gas emissions, and energy waste. Every sector contributes to increasing the above-mentioned factors in the environment. One of the main reasons for this biodegradation and climate change is energy resources. Using renewable energy instead of fossil fuel can solve the problem. This paper aims to find open research problems about the application of renewable energy and to initiate new innovative ideas regarding renewable energy. A detailed state of the art includes trends for renewable energy resources, their theoretical evolution, and practical implementations. Methodologies used for decision analysis in renewable energy are discussed in detail. The time frame for this analysis of renewable energy is 2010 to >2022. An extensive literature review finds a huge research scope in applying renewable energy in other research, such as logistics, smart production management, and advanced inventory management. Then, major changes in the profit/cost of that system due to renewable energy can be analyzed. This research proposes some innovative new ideas related cost formulas for renewable energy for the corresponding open problems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference174 articles.

1. McKinsey & Company (2022, December 12). The Decoupling of GDP and Energy Growth: A CEO Guide. Available online: https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-decoupling-of-gdp-and-energy-growth-a-ceo-guide.

2. Energy Education (2022, December 12). Energy Conversion Technology. Available online: https://energyeducation.ca/encyclopedia/Energy_conversion_technology.

3. World Economic Forum (2022, December 12). Energy Transition. How Can We Store Renewable Energy? 4 Technologies That Can Help. April 2021. Available online: https://www.weforum.org/agenda/2021/04/renewable-energy-storage-pumped-batteries-thermal-mechanical/.

4. Investigation on Harvesting Characteristics of Convective Wind Energy From Vehicle Driving on Multi-Lane Highway;Hu;J. Energy,2023

5. A robust Possibilistic Flexible Programming Approach Toward a Resilient and Cost-Efficient Biodiesel Supply Chain Network;Habib;J. Clean. Prod.,2022

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3