Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles

Author:

Rahman Ataur1,Myo Aung Kyaw1ORCID,Ihsan Sany1,Raja Ahsan Shah Raja Mazuir2,Al Qubeissi Mansour3ORCID,T. Aljarrah Mohannad24

Affiliation:

1. Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia

2. College of Engineering Technology, University of Doha for Science and Technology, Doha 24449, Qatar

3. School of Mechanical and Renewable Engineering, Coventry University, Coventry CV1 5FB, UK

4. Department of Chemical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract

Innovations are required for electric vehicles (EVs) to be lighter and more energy efficient due to the range anxiety issue. This article introduces an intelligent control of an organic structure solar supercapacitor (OSSC) for EVs to meet electrical load demands with solar renewable energy. A carbon fibre-reinforced polymer, nano zinc oxide (ZnO), and copper oxide (CuO) fillers have been used in the development of OSSC prototypes. The organic solar cell, electrical circuits, converter, controller, circuit breaker switch, and batteries were all integrated for the modelling of OSSCs. A carbon fibre (CF)-reinforced CuO-doped polymer was utilised to improve the concentration of electrons. The negative electrodes of the CF were strengthened with nano ZnO epoxy to increase the mobility of electrons as an n-type semiconductor (energy band gap 3.2–3.4 eV) and subsequently increased to 3.5 eV by adding 6% π-carbon. The electrodes of the CF were strengthened with epoxy-filled nano-CuO as a p-type semiconductor to facilitate bore/positive charging. They improve the conductivity of the OSSC. The OSSC power storage was controlled by an adaptive neuro-fuzzy intelligent system controller to meet the load demand of EVs and auxiliary battery charging. Moreover, a fully charged OSSC (solar irradiance = 1000 W/m2) produced 561 W·h/m2 to meet the vehicle load demand with 45 A of auxiliary battery charging current. Therefore, the OSSC can save 15% in energy efficiency and contribute to emission control. The integration of an OSSC with an EV battery can minimise the weight and capacity of the battery by 7.5% and 10%, respectively.

Funder

Prototype Research Grants, Malaysia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3