Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting

Author:

Gouveia Hugo T. V.1ORCID,Souza Murilo A.1ORCID,Ferreira Aida A.2ORCID,de Albuquerque Jonata C.1ORCID,Nóbrega Neto Otoni1ORCID,da Silva Lira Milde Maria1ORCID,de Aquino Ronaldo R. B.1ORCID

Affiliation:

1. Department of Electrical Engineering, Federal University of Pernambuco, Recife 50670-901, Brazil

2. Department of Electrical Systems, Federal Institute of Pernambuco, Recife 50740-545, Brazil

Abstract

The large-scale integration into electrical systems of intermittent power-generation sources, such as wind power plants, requires greater efforts and knowledge from operators to keep these systems operating efficiently. These sources require reliable output power forecasts to set up the optimal operating point of the electrical system. In previous research, the authors developed an evolutionary approach algorithm called RCDESIGN to optimize the hyperparameters and topology of Echo State Networks (ESN), and applied the model in different time series forecasting, including wind speed. In this paper, RCDESIGN was modified in some aspects of the genetic algorithm, and now it optimizes an ESN with augmented states (ESN-AS) and has been called RCDESIGN-AS. The evolutionary algorithm allows the search for the best parameters and topology of the recurrent neural network to be performed simultaneously. In addition, RCDESIGN-AS has the important characteristic of requiring little computational effort and processing time since it is not necessary for the eigenvalues of the reservoir weight matrix to be reduced and also due to the fact that the augmented states make it possible to reduce the number of neurons in the reservoir. The method was applied for wind speed forecasting with a 24-h ahead horizon using real data of wind speed from five cities in the Northeast Region of Brazil. All results obtained with the proposed method overcame forecasting performed by the persistence method, obtaining prediction gains ranging from 60% to 80% in relation to this reference method. In some datasets, the proposed method also yielded better results than the traditional ESN, showing that RCDESIGN-AS can be a powerful tool for wind-speed forecasting and possibly for other types of time series.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Implemented at Federal University of Pernambuco

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3