A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System

Author:

Zhou Cong12,Li Yizhen2,Wang Fenghao2,Wang Zeyuan2,Xia Qing2,Zhang Yuping3,Liu Jun3,Liu Boyang1,Cai Wanlong2ORCID

Affiliation:

1. Shannxi Zhongmei New Energy Co., Ltd., Xi’an 710054, China

2. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China

Abstract

With the development of the economy and society, energy problems have become a great concern. The heat pump-coupled thermal energy storage (TES) system is a potential form of building heating, which can improve the stability of the grid and promote the consumption of renewable energy. Phase change materials (PCMs) are widely used in the field of building heating, but there are still some problems such as unsatisfactory melting points, low thermal conductivity, phase separation, and supercooling, which limit the application of PCMs in heat pump heating systems. Therefore, it is very important to improve PCMs by a performance improvement method. This work first summarizes the classification, advantages and disadvantages of PCMs, and introduces the connection between PCMs and heat pumps. Then, a detailed summary of PCMs applied in heat pump heating systems is presented, and a comprehensive review of the performance improvement methods for PCMs, which include additives, encapsulation, and eutectic compounds, is discussed. Finally, the existing problems, solutions, and future research directions are proposed. The emphasis of the research is to clarify the influence of PCMs on heat pump performance and the effect of different performance improvement methods on PCMs, and to illustrate the future development direction for PCMs in heat pump heating technologies, including the matching of heat pumps and PCMs, multi-standard decision methods and advanced control strategies.

Funder

QinChuangyuan ’Scientist + Engineer’ team project

Innovation Capability Support Program of Shaanxi Province

Social Development Demonstration Project on Science and Technology Innovation of Xi’an

Open Project of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3