State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators

Author:

Koukouvinis Phoevos (Foivos)1ORCID,Anagnostopoulos John1

Affiliation:

1. Laboratory of Hydraulic Turbomachines, Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 157 80 Zografou, Greece

Abstract

The expanding role of renewable energy sources in the electricity market share implies the increasing role of hydropower and the exploitation of unharnessed hydraulic potential, in the scope of sustainability and net zero emissions. Hydro-turbine design practices are expected to expand beyond achieving high efficiency goals, to multi-objective criteria ranging from efficient reversible operation to fish-friendly concepts. The present review paper outlines fundamental characteristics of hydropower, summarizing its potential impact toward aquatic life. Estimates of lethality for each damage mechanism are discussed, such as barotrauma, blunt impact and shearing, along with relevant advances in experimental techniques. Furthermore, numerical techniques are discussed, ranging from simple particle tracking to fully coupled six-degree-of-freedom tracking, which can be used to investigate candidate designs and their fish-friendly performance, presenting their advantages and disadvantages. Subsequently, a link to the individual damage mechanisms is established, to proposed holistic performance metrics, useful for providing estimates of fish-friendliness of a given hydropower installation. Finally, recent developments and design practices for fish-friendly turbine concepts are presented.

Funder

European Union and Greek national funds

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference129 articles.

1. BP p.l.c. (2022). Bp Statistical Review of World Energy, BP Plc.

2. IRENA (2022). Renewable Energy Statistics 2022, International Renewable Energy Agency.

3. International Energy Agency (2021). Hydropower.

4. Shifts in Hydropower Operation to Balance Wind and Solar Will Modify Effects on Aquatic Biota;Jager;Water Biol. Secur.,2022

5. Murdock, H., Duncan, G., and Thomas, A. (2021). Renewables Global Status Report, International Nuclear Information System.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3