Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC

Author:

Zuo Chengming1,Dai Juchuan1,Li Guo1,Li Mimi1,Zhang Fan1

Affiliation:

1. School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Data pre-processing is the first step of using SCADA data to study the performance of wind turbines. However, there is a lack of knowledge of how to obtain more effective data pre-processing algorithms. This paper fully explores multiple data pre-processing algorithms for power curve modeling. A three-stage data processing mode is proposed, namely, preliminary data filtering and compensation (Stage I), secondary data filtering (Stage II), and single-valued processing (Stage Ⅲ). Different data processing algorithms are selected at different stages and are finally merged into nine data processing algorithms. A novel evaluation method based on energy characteristic consistency (ECC) is proposed to evaluate the reliability of various algorithms. The influence of sliding mode and benchmark of Binning on data processing has been fully investigated through indicators. Four wind turbines are selected to verify the advantages and disadvantages of the nine data processing methods. The result shows that at the same wind speed, the rotational speed and power values obtained by MLE (maximum likelihood estimation) are relatively high among the three single-valued methods. Among the three outlier filtering methods, the power value obtained by KDE (kernel density estimation) is relatively large. In general, KDE-LSM (least square method) has good performance in general. The sum of four evaluating index values obtained by KDE-LSM from four wind turbines is the smallest.

Funder

National Natural Science Foundation of People’s Republic of China

the science and technology innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3