Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries

Author:

Wang Donghun1,Hwang Jihwan1,Lee Jonghyun1,Kim Minchan1ORCID,Lee Insoo1

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Lithium-ion batteries are commonly used in electric vehicles, mobile phones, and laptops because of their environmentally friendly nature, high energy density, and long lifespan. Despite these advantages, lithium-ion batteries may experience overcharging or discharging if they are not continuously monitored, leading to fire and explosion risks, in cases of overcharging, and decreased capacity and lifespan, in cases of overdischarging. Another factor that can decrease the capacity of these batteries is their internal resistance, which varies with temperature. This study proposes an estimation method for the state of charge (SOC) using a neural network (NN) model that is highly applicable to the external temperatures of batteries. Data from a vehicle-driving simulator were used to collect battery data at temperatures of 25 °C, 30 °C, 35 °C, and 40 °C, including voltage, current, temperature, and time data. These data were used as inputs to generate the NN models. The NNs used to generate the model included the multilayer neural network (MNN), long short-term memory (LSTM), gated recurrent unit (GRU), and gradient boosting machine (GBM). The SOC of the battery was estimated using the model generated with a suitable temperature parameter and another model generated using all the data, regardless of the temperature parameter. The performance of the proposed method was confirmed, and the SOC-estimation results demonstrated that the average absolute errors of the proposed method were superior to those of the conventional technique. In the estimation of the battery’s state of charge in real time using a Jetson Nano device, an average error of 2.26% was obtained when using the GRU-based model. This method can optimize battery performance, extend battery life, and maintain a high level of safety. It is expected to have a considerable impact on multiple environments and industries, such as electric vehicles, mobile phones, and laptops, by taking advantage of the lightweight and miniaturized form of the Jetson Nano device.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3