Automatic 360° Mono-Stereo Panorama Generation Using a Cost-Effective Multi-Camera System

Author:

Ullah HayatORCID,Zia Osama,Kim Jun Ho,Han KyungjinORCID,Lee Jong WeonORCID

Abstract

In recent years, 360° videos have gained the attention of researchers due to their versatility and applications in real-world problems. Also, easy access to different visual sensor kits and easily deployable image acquisition devices have played a vital role in the growth of interest in this area by the research community. Recently, several 360° panorama generation systems have demonstrated reasonable quality generated panoramas. However, these systems are equipped with expensive image sensor networks where multiple cameras are mounted in a circular rig with specific overlapping gaps. In this paper, we propose an economical 360° panorama generation system that generates both mono and stereo panoramas. For mono panorama generation, we present a drone-mounted image acquisition sensor kit that consists of six cameras placed in a circular fashion with optimal overlapping gap. The hardware of our proposed image acquisition system is configured in such way that no user input is required to stitch multiple images. For stereo panorama generation, we propose a lightweight, cost-effective visual sensor kit that uses only three cameras to cover 360° of the surroundings. We also developed stitching software that generates both mono and stereo panoramas using a single image stitching pipeline where the panorama generated by our proposed system is automatically straightened without visible seams. Furthermore, we compared our proposed system with existing mono and stereo contents generation systems in both qualitative and quantitative perspectives, and the comparative measurements obtained verified the effectiveness of our system compared to existing mono and stereo generation systems.

Funder

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3