Anomaly Detection Trusted Hardware Sensors for Critical Infrastructure Legacy Devices

Author:

Fournaris Apostolos P.ORCID,Dimopoulos CharisORCID,Lampropoulos Konstantinos,Koufopavlou Odysseas

Abstract

Critical infrastructures and associated real time Informational systems need some security protection mechanisms that will be able to detect and respond to possible attacks. For this reason, Anomaly Detection Systems (ADS), as part of a Security Information and Event Management (SIEM) system, are needed for constantly monitoring and identifying potential threats inside an Information Technology (IT) system. Typically, ADS collect information from various sources within a CI system using security sensors or agents and correlate that information so as to identify anomaly events. Such sensors though in a CI setting (factories, power plants, remote locations) may be placed in open areas and left unattended, thus becoming targets themselves of security attacks. They can be tampering and malicious manipulated so that they provide false data that may lead an ADS or SIEM system to falsely comprehend the CI current security status. In this paper, we describe existing approaches on security monitoring in critical infrastructures and focus on how to collect security sensor–agent information in a secure and trusted way. We then introduce the concept of hardware assisted security sensor information collection that improves the level of trust (by hardware means) and also increases the responsiveness of the sensor. Thus, we propose a Hardware Security Token (HST) that when connected to a CI host, it acts as a secure anchor for security agent information collection. We describe the HST functionality, its association with a host device, its expected role and its log monitoring mechanism. We also provide information on how security can be established between the host device and the HST. Then, we introduce and describe the necessary host components that need to be established in order to guarantee a high security level and correct HST functionality. We also provide a realization–implementation of the HST overall concept in a FPGA SoC evaluation board and describe how the HST implementation can be controlled. In addition, in the paper, two case studies where the HST has been used in practice and its functionality have been validated (one case study on a real critical infrastructure test site and another where a critical industrial infrastructure was emulated in our lab) are described. Finally, results taken from these two case studies are presented, showing actual measurements for the in-field HST usage.

Funder

H2020 LEIT Information and Communication Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

2. Homeland Security and Critical Infrastructure Protection;Baggett,2018

3. Who’s using Cyberthreat Intelligence and how?;Shackleford;SANS Inst.,2015

4. Critical Infrastructure Protection in Homeland Security: Defending a Networked Nation;Lewis,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3