Calibration of UAV Flight Parameters to Inspect the Deterioration of Heritage Façades Using Orthogonal Arrays

Author:

Pérez-Portugal Alison,Atencio EdisonORCID,Muñoz-La Rivera FelipeORCID,Herrera Rodrigo F.ORCID

Abstract

Heritage façades are relevant to the historical preservation and identity of a city. Their deterioration can cause the devaluation of the urban environment, together with accidents caused by possible detachment of their different elements; therefore, maintaining them is crucial. It is important to have early warning systems in place, systems which would indicate potential damage and deterioration of such façades, which can be caused by factors such as humidity, earthquakes, the passage of time, or even people. This is often done through visual inspection; however, visual inspection is often affected by external factors, such as the financing of the on-site inspection and the availability of experts. Unmanned aircraft vehicles (UAVs) are a practical and economical tool that has facilitated and improved imaging by regulating parameters such as camera angle, capture distance and image overlap, thus allowing improvements in photogrammetry techniques for virtual reconstruction processes. Although the implementation of this technology has been studied in recent years, research has focused primarily on horizontal structures, such as roads. In the case of vertical structures, flight parameters are traditionally defined by trial and error, without any methodological procedure. Therefore, this paper proposes a methodology to calibrate UAV flight parameters to build a photogrammetric 3D model of a vertical structure. This proposal is based on the development of a series of experiments configured through Taguchi orthogonal arrays, which is a method that significantly reduces the number of experiments required. This methodology is applied to a case study of a façade with architectural heritage features. The results obtained offer a flight plan and the optimal parameters to achieve efficiency in the capture of images in an inspection of heritage façades, thus achieving the optimisation of resources and time.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Reconstruction of a Virtual Building Environment;Advanced Manufacturing Processes V;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3