Author:
Fan Xiaomao,Wang Hailiang,Zhao Yang,Li Ye,Tsui Kwok Leung
Abstract
Estimating blood pressure via combination analysis with electrocardiogram and photoplethysmography signals has attracted growing interest in continuous monitoring patients’ health conditions. However, most wearable/portal monitoring devices generally acquire only one kind of physiological signals due to the consideration of energy cost, device weight and size, etc. In this study, a novel adaptive weight learning-based multitask deep learning framework based on single lead electrocardiogram signals is proposed for continuous blood pressure estimation. Specifically, the proposed method utilizes a 2-layer bidirectional long short-term memory network as the sharing layer, followed by three identical architectures of 2-layer fully connected networks for task-specific blood pressure estimation. To learn the importance of task-specific losses automatically, an adaptive weight learning scheme based on the trend of validation loss is proposed. Extensive experiment results on Physionet Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II waveform database demonstrate that the proposed method using electrocardiogram signals obtains estimating performance of 0.12±10.83 mmHg, 0.13±5.90 mmHg, and 0.08±6.47 mmHg for systolic blood pressure, diastolic blood pressure, and mean arterial pressure, respectively. It can meet the requirements of the British Hypertension Society standard and US Association of Advancement of Medical Instrumentation standard with a considerable margin. Combined with a wearable/portal electrocardiogram device, the proposed model can be deployed to a healthcare system to provide a long-term continuous blood pressure monitoring service, which would help to reduce the incidence of malignant complications to hypertension.
Funder
National Natural Science Foundation of China
City University of Hong Kong
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献