A Combined Isolation and Formulation Approach to Convert Nanomilled Suspensions into High Drug-Loaded Composite Particles That Readily Reconstitute

Author:

Coelho AlexanderORCID,Schenck LukeORCID,Guner GulenayORCID,Punia Ashish,Bilgili EcevitORCID

Abstract

The advantage of nanoparticles to improve bioavailability of poorly soluble drugs is well known. However, the higher-energy state of nanoparticles beneficial for bioavailability presents challenges for both the stability of nanosuspensions and preventing irreversible aggregation if isolated as dry solids. The aim of this study is to explore the feasibility of an evaporation isolation route for converting wet media milled nanosuspensions into high drug-loaded nanocomposites that exhibit fast redispersion in aqueous media, ideally fully restoring the particle size distribution of the starting suspension. Optimization of this approach is presented, starting from nanomilling conditions and formulation composition to achieve physical stability post milling, followed by novel evaporative drying conditions coupled with various dispersant types/loadings. Ultimately, isolated nanocomposite particles reaching 55–75% drug load were achieved, which delivered fast redispersion and immediate release of nanoparticles when the rotary evaporator drying approach was coupled with higher concentration of hydrophilic polymers/excipients. This bench-scale rotary evaporation approach serves to identify optimal nanoparticle compositions and has a line of sight to larger scale evaporative isolation processes for preparation of solid nanocomposites particles.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3