Improving the Powder Properties of an Active Pharmaceutical Ingredient (Ethenzamide) with a Silica Nanoparticle Coating for Direct Compaction into Tablets

Author:

Tadauchi Tatsuki,Yamada Daiki,Koide Yoko,Yamada Mayumi,Shimada Yasuhiro,Yamazoe ErikoORCID,Ito Takaaki,Tahara Kohei

Abstract

To improve the powder properties of active pharmaceutical ingredients (APIs), we coated APIs with silica nanoparticles using a dry process that allowed for direct compression into tablets. The dry coating performed with different apparatuses (a batch-type high-speed shear mixer (Mechanomill) and a continuous conical screen mill (Comil)) and properties of the resulting dry-coated APIs were compared. Ethenzamide (ETZ), which has low powder flowability, was selected as the host particle to be improved and the colloidal silicas Aerosil 200 and R972 were used as the guest particles. Both coating processes and types of silica nanoparticles improved the powder flowability (angle of repose) of ETZ under unstressed conditions. Inverse gas chromatography demonstrated that dry coating with silica nanoparticles reduced the surface free energy and improved the homogeneity of the surface energy distribution of ETZ particles. Under the stress conditions of a shear cell test, the Mechnomill-based treatment improved the powder flowability of ETZ from that of untreated ETZ; however, the Comil-based treatment did not improve the flowability. The mechanical shear force exerted by Comil was apparently insufficient for interactions between host and guest particles. However, the properties of tableted ETZ were enhanced even when the silica nanoparticles were coated using Comil.

Funder

Aichi Prefectural Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3