Enhanced Specific Heat Capacity of Liquid Entrapped between Two Solid Walls Separated by a Nanogap

Author:

Mahmud RifatORCID,Morshed A.K.M. Monjur,Paul Titan C.

Abstract

Size and thermal effect on molar heat capacity of liquid at constant volume (Cv) on a nanometer scale have been investigated by controlling the temperature and density of the liquid domain using equilibrium molecular dynamics (EMD) simulations. Lennard-Jones (LJ) type molecular model with confinement gap thickness (h) 0.585 nm to 27.8 nm has been used with the temperature (T) ranging from 100 K to 140 K. The simulation results revealed that the heat capacity of the nanoconfined liquid surpasses that of the bulk liquid within a defined interval of gap thickness; that the temperature at which maximum heat capacity occurs for a nanoconfined liquid vary with gap thickness following a power law, TCv,max = 193.4 × (h/a)−0.3431, ‘a’ being the lattice constant of Argon (solid) at 300 K; and that for a specified gap thickness and temperature, the confined liquid can exhibit a heat capacity that can be more than twice the heat capacity of the bulk liquid. The increase in heat capacity is underpinned by an increase in non-configurational (phonon and anharmonic modes of vibration) and configurational (non-uniform density distribution, enhanced thermal resistance, guided molecular mobility, etc.) contributions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3