Concentration of Lipase from Aspergillus oryzae Expressing Fusarium heterosporum by Nanofiltration to Enhance Transesterification

Author:

Wijaya Hans,Sasaki Kengo,Kahar PrihardiORCID,Quayson Emmanuel,Rachmadona Nova,Amoah Jerome,Hama Shinji,Ogino Chiaki,Kondo Akihiko

Abstract

Nanofiltration membrane separation is an energy-saving technology that was used in this study to concentrate extracellular lipase and increase its total activity for biodiesel production. Lipase was produced by recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (FHL). A sulfonated polyethersulfone nanofiltration membrane, NTR-7410, with a molecular weight cut-off of 3 kDa was used for the separation, because recombinant lipase has a molecular weight of approximately 20 kDa, which differs from commercial lipase at around 30 kDa for CalleraTM Trans L (CalT). After concentration via nanofiltration, recombinant lipase achieved a 96.8% yield of fatty acid methyl ester (FAME) from unrefined palm oil, compared to 50.2% for CalT in 24 h. Meanwhile, the initial lipase activity (32.6 U/mL) of recombinant lipase was similar to that of CalT. The composition of FAME produced from recombinant concentrated lipase, i.e., C14:1, C16:0, C18:0, C18:1 cis, and C18:2 cis were 0.79%, 34.46%, 5.41%, 45.90%, and 12.46%, respectively, after transesterification. This FAME composition, even after being subjected to nanofiltration, was not significantly different from that produced from CalT. This study reveals the applicability of a simple and scalable nanofiltration membrane technology that can enhance enzymatic biodiesel production.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel concepts for the biocatalytic synthesis of second-generation biodiesel;Frontiers in Catalysis;2024-02-16

2. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review;Journal of Biotechnology;2023-03

3. Optimization of lipase activity from Muricauda aquimarina by pH and temperature conditions;PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity;2023

4. Progress in Enzymatic Biodiesel Production and Commercialization;Processes;2021-02-15

5. Special Issue on “Biotechnology for Sustainability and Social Well Being”;Processes;2021-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3