Integration of Freeplay-Induced Limit Cycles Based On a State Space Iterating Scheme

Author:

Wang XiangyuORCID,Wu Zhigang,Yang Chao

Abstract

Time integration is commonly used to obtain accurate system responses, such as the limit cycle oscillations (LCOs) for an aeroelastic system with freeplay. However, the integrations that start with various initial conditions (I.C.s) are usually studied case by case, so only a few system states can possibly be focused on. This paper proposes a state space iterating (SSI) scheme to find LCO solutions using time integration by using another method. First, a large number of arbitrary I.C. cases are used for time integrations, but only a very short integration time is required for each I.C. case. Second, system behaviors are depicted visually through a method that combines a modified Poincaré map and Lorenz map, in which the LCO solutions are found as fixed points via visual inspections. To verify the SSI scheme’s ability to find LCOs, a typical plunge–pitch wing section is established numerically. Time integrations with both the classic scheme and the proposed SSI scheme are carried out. The LCO results of the SSI scheme are well-aligned with those from the classic scheme. The SSI scheme visualizes the patterns of system responses using arbitrary I.C. cases and analyzes the LCO stability, which provides more mathematical insights into an aeroelastic system with freeplay.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3