Effects of Crop Protection Unmanned Aerial System Flight Speed, Height on Effective Spraying Width, Droplet Deposition and Penetration Rate, and Control Effect Analysis on Wheat Aphids, Powdery Mildew, and Head Blight

Author:

Zhang SongchaoORCID,Qiu Baijing,Xue Xinyu,Sun Tao,Gu Wei,Zhou Fuliang,Sun Xiangdong

Abstract

As a new type of crop protection machinery, the Crop Protection Unmanned Aerial System (CPUAS) has developed rapidly and been widely used in China; currently, how to use the CPUAS scientifically has become a top priority. However, the relationships between the operating parameters of the CPUAS and the effective spraying width (ESW), droplet distribution characteristics, and control effects of insect pests and diseases are not clear yet. Therefore, three levels of flight speed (FS) as 3, 4, and 5 m/s, three levels of flight height (FH) as 1.5, 2.0, and 2.5 m, and spraying volume 2.0 L/min experiments were carried out to investigate the effects of FS and FH on the ESW, droplet deposition uniformity (DDU), and droplet penetration rate (DPR) by using an electric single-rotor CPUAS CE20. Based on the obtained results, combined with the insect pests and diseases occurrence agronomic laws, the optimal operation parameters of the CPUAS were selected to control the wheat aphids, powdery mildew, and head blight. The results showed that the ESW of CE20 was not consistent, the maximum value was 5.78 m, and the minimum one was 2.51 m. The FS had a highly significant impact on ESW (p = 0.0033 < 0.01), while the FH and the interaction between FS and FH had no significant impact on ESW. The coefficients of variation (CV) of the droplet deposition were between 23.3% and 34.4%, which meant good deposition uniformity. The FH (p = 0.0019) and the interaction between FS and FH (p = 0.02) had significant impacts on the DDU. The control effects on aphids were 78.71% (1 day), 84.88% (3 days), and 90.42% (7 days), the control effects on powdery mildew were 77.17% (7 days) and 82.83% (14 days), and the control effect on head blight was 88.32% (20 days). This study proved that by the optimization of parameters and the combination of agronomy, good control effects for insect pests and diseases could be achieved by the CPUAS. The research results would provide some technical supports for CPUAS application.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Anti-plant Defense Response Strategies Mediated by the Secondary Symbiont Hamiltonella defensa in the Wheat Aphid Sitobion miscanthi

2. Development of a wheat aphid population dynamics model based on cusp catastrophe theory

3. Research progress of wheat powdery mildew forecasting method;Li;Meteor. Environ. Sci.,2013

4. Regionalization of wheat powdery mildew oversummering in China based on digital elevation

5. Occurrence and characteristics and reason analysis of wheat head blight in 2018 in China;Huang;Plant Prot.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3