Fabrication and Biodegradability of Starch Cell-Plastics as Recyclable Resources

Author:

Nakanishi AkihitoORCID,Iritani Kohei,Sakihama Yuri,Watanabe Marina,Mochiduki Ayano,Tsuruta Akane,Sakamoto Syunta,Ota Ayami

Abstract

Recently, cell-plastics, which are composed of unicellular green algal cells and biodegradable compounds as ingredients and fillers, have been suggested as carbon-recyclable materials instead of petroleum-based plastics. In this study, cell-plastics, fabricated with Chlamydomonas reinhardtii as an ingredient and a mixture of two types of starches (raw and oxidized starches) as a filler, were successfully stabilized as independent structures despite the quantity of algal cells being nine times more than that of starch. All starch cell-plastics were water repellent, possibly due to their bumpy surface structures. The starch cell-plastic, composed of 50% cells and 50% starch (1.5:1 of oxidized starch versus raw starch), showed 327 ± 52 MPa as Young’s modulus and 6.45 ± 1.20 MPa as tensile strength, indicating the possibility to be a suitable replacement for petroleum-based plastics. Additionally, all starch cell-plastics showed water-repellency and maintained those structures dipped in phosphate-buffered saline buffer as a water environment for 24 h, meaning that all starch cell-plastics had evaluable water resistance. On the other hand, by adding α-amylase, all starch cell-plastics were collapsed and lost the weight efficiently, indicated their biodegradability. This is the first paper to describe starch cell-plastics from their fabrication to biodegradation.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3