Time Reversal and Fractional Fourier Transform-Based Method for LFM Signal Detection in Underwater Multi-Path Channel

Author:

Zhang ZhichenORCID,Wang Haiyan,Yao Haiyang

Abstract

Fractional Fourier transform (FrFT) is a useful tool to detect linear frequency modulated (LFM) signal. However, the detection performance of the FrFT-based method will deteriorate drastically in underwater multi-path environment. This paper proposes a novel method based on time-reversal and fractional Fourier transform (TR-FrFT) to solve this problem. We make use of the focusing ability of time-reversal to mitigate the influence of multi-path, and then improve the detection performance of FrFT. Simulated results show that, compared to FrFT, the difference between peak value and maximum pseudo-peak value of the signal processed by TR-FrFT is improved by 8.75 dB. Lake experiments results indicate that, the difference between peak value and maximum pseudo-peak value of the signal processed by TR-FrFT is improved by 7.6 dB. The detection performance curves of FrFT and TR-FrFT detectors with simulated data and lake experiments data verify the effectiveness of proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3