Abstract
This study analyzes CZT SPECT myocardial perfusion images that are collected at Chang Gung Memorial Hospital, Kaohsiung Medical Center in Kaohsiung. This study focuses on the classification of myocardial perfusion images for coronary heart diseases by convolutional neural network techniques. In these gray scale images, heart blood flow distribution contains the most important features. Therefore, data-driven preprocessing is developed to extract the area of interest. After removing the surrounding noise, the three-dimensional convolutional neural network model is utilized to classify whether the patient has coronary heart diseases or not. The prediction accuracy, sensitivity, and specificity are 87.64%, 81.58%, and 92.16%. The prototype system will greatly reduce the time required for physician image interpretation and write reports. It can assist clinical experts in diagnosing coronary heart diseases accurately in practice.
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献