2-D Cross-Plot Model Analysis Using Integrated Geophysical Methods for Landslides Assessment

Author:

Zakaria Muhammad Taqiuddin,Mohd Muztaza Nordiana,Zabidi HareyaniORCID,Salleh Alyaa Nadhira,Mahmud NazirahORCID,Samsudin Nuraisyah,Rosli Farid Najmi,Olugbenga Adeeko Tajudeen,Jia Teoh YingORCID

Abstract

The large or small scale of a landslide is a natural, widespread process, resulting from the downward and outward movement of slope-forming materials, such as sculpting the landscape. Characterized landslide material and properties’ inhomogeneities conditions become a challenge as the process required the availability of a wide range of data, observations, and measurements with an evaluation of geological and hydrological conditions. Detailed investigations represent an essential component of the landslide risk mitigation process, relying on subsurface investigations, discrete subsurface sampling, and laboratory tests. To extend this approach, seismic refraction and two-dimensional (2-D) resistivity were utilized to study the landslides activities in Ulu Yam. The cross-plot analysis was introduced to integrate the geophysical results based on the criteria of the model. Velocity distributions from seismic refraction revealed the stiffness of the soil, where weak zones identified with values of Vp ≤ 1200 m/s, defined as threshold frequency for failure to occur. The 2-D resistivity shows that the weak zones were identified with resistivity values of <1200 Ωm. The 2-D cross-plot model gives a comprehensive interpretation where a low velocity and resistivity value represents the failure plane of materials to failure. The volume of mass sliding was calculated based on retrieved information from the model.

Funder

Universiti Sains Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference84 articles.

1. Global fatal landslide occurrence from 2004 to 2016

2. Global patterns of loss of life from landslides

3. Landslides and Geophysical Investigations: Advantages and Limitations

4. Landslide disaster in Malaysia: An overview;Haliza;Health Environ. J.,2017

5. Slope movement types and processes;Varnes,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3