Author:
Oh Sebeom,Choi Gahyun,Lee Deokhyun,Choi Myungsik,Kim Kyungmo
Abstract
To ensure the integrity and safety of steam generator tubes in nuclear power plants, eddy-current testing is periodically employed. Because steam generators are equipped with thousands of thin-walled tubes, the eddy current is tested using a bobbin probe that can be used at high speed. Steam generator heat pipes in nuclear power plants have different sizes and shapes depending on their row number. In particular, heat pipes in the first row are located inside the steam generator and are of the U-bend type because the radius of the curved pipe is the smallest. A steam generator heat pipe has a thickness of about 1 mm, so a geometrical cross-sectional area change may occur due to residual stress when manufacturing the curved pipe. It is difficult to determine an exact shape because the change in cross-sectional area generated during the manufacturing process varies depending on the position of the pipe and the distortion rate. During eddy-current testing (ECT), to ensure the integrity and safety of the steam generator tubes, the shape change of the bend may cause a noise signal, making it difficult to evaluate defects in the pipe. However, the noise signals generated in this situation are difficult to analyze in a real measurement environment, and difficult to verify by producing a mock-up, which complicates distinguishing a noise signal from a defective signal. To solve this problem, various noise signals were obtained using the electromagnetic analysis method of COMSOL Multiphysics, a commercial program based on numerical analysis of the finite element method, to simulate the environment, including the change in cross-sectional area of the heat pipe. When compared to the actual measurement signal, the accuracy of the simulations improved, and various types of noise signals were detected, which may be helpful for accurate evaluations of defects during actual inspections.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference19 articles.
1. Practical Eddy Current testing, Indian Society for Nondestructive Testing–National Certification Board Series;Rao,2007
2. Eddy Current Testing Technology;Terry,2012
3. Non-destructive Testing for Plant Life Assessment;Einav,2005
4. Modeling of eddy current probe response for steam generator tubes
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献