Uncertainty Reduction of Unlabeled Features in Landslide Inventory Using Machine Learning t-SNE Clustering and Data Mining Apriori Association Rule Algorithms

Author:

Althuwaynee Omar F.,Aydda AliORCID,Hwang In-Tak,Lee Yoon-Kyung,Kim Sang-Wan,Park Hyuck-JinORCID,Lee Moon-Se,Park Yura

Abstract

A landslide inventory, after an intense rainfall event in 1998, Southwestern Korea, was collected by digitizing aerial photographs. This left high uncertainty in the inventoried features to be verified by ground truths. To reduce the uncertainty, the photographs were reexamined, supported by the time slider in Google Earth. We observed 77 deformed slopes, which were similar in shape and texture, to the inventoried landslides. We then sought to label the observed formations based on their spatial relationship with surrounding conditions. A three-phase methodology was developed. First, an inventory of landslide, no landslide, vulnerable slopes, and unlabeled features was analyzed based on spatial cluster patterns, and then the dimension was reduced using the t-distributed stochastic neighbor embedding (t-SNE). Second, the Apriori algorithm, based on association rule mining, was used to identify common relations in the inventory using landslide antecedent factors (derived from topographic and landcover maps) that are linked to areas of unlabeled features. Third, the findings were validated using Landsat TM (Thematic mapper) and ETM+(Enhanced thematic mapper) images acquired before and after the original inventory. Current research offers practical and economical solutions (reduced reliance on paid remote sensing sensors and field survey) to labeling and classification of missing or outdated spatial attributed information.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3