Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages

Author:

Kushkevych IvanORCID,Dordević DaniORCID,Vítězová MonikaORCID,Rittmann Simon K.-M. R.ORCID

Abstract

Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.

Funder

Masarykova Univerzita

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference143 articles.

1. Bacteriophages: Biology and Applications,2004

2. Bacteriophage Therapy in Humans;Sulakvelidze;Bacteriophages Biol. Appl.,2004

3. Bacteriophages and Biofilms

4. Phage therapy: delivering on the promise

5. Phage Therapy in Clinical Practice: Treatment of Human Infections

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3