Fructans with Varying Degree of Polymerization Enhance the Selective Growth of Bifidobacterium animalis subsp. lactis BB-12 in the Human Gut Microbiome In Vitro

Author:

Van den Abbeele Pieter,Duysburgh Cindy,Ghyselinck Jonas,Goltz Shellen,Berezhnaya Yulia,Boileau Thomas,De Blaiser Anke,Marzorati Massimo

Abstract

Synbiotics aim to improve gastrointestinal health by combining pre- and probiotics. This study evaluated combinations of Bifidobacterium animalis subsp. lactis BB-12 with seven fructans: oligofructoses (OF1-OF2; low degree of polymerization (DP)), inulins (IN1-IN2-IN3; high DP) and OF/IN mixtures (OF/IN1-OF/IN2). During monoculture incubations, all fructans were fermented by BB-12 as followed from increased BB-12 numbers and increased acetate and lactate concentrations, with most pronounced fermentation for low DP fructans (OF1-OF2). Further, short-term colonic incubations for three human donors revealed that also in presence of a complex microbiota, all fructans (particularly OF1) consistently selectively enhanced the growth of BB-12. While each fructan as such already increased Bifidobacteriaceae numbers with 0.94–1.26 log(cells/mL), BB-12 co-supplementation additionally increased Bifidobacteriaceae with 0.17–0.46 log(cells/mL). Further, when co-supplemented with fructans, BB-12 decreased Enterobacteriaceae numbers (significant except for IN1-IN3). At metabolic level, all fructans decreased pH due to increased acetate and lactate production, while OF/IN2-IN1-IN2-IN3 also stimulated propionate and butyrate production. BB-12 co-supplementation further increased propionate and butyrate for OF/IN2-IN3 and IN1-IN2, respectively. Overall, combinations of BB-12 with fructans are promising synbiotic concepts, likely due to intracellular consumption of low DP-fructans by BB-12 (either present in starting product or released upon fermentation by indigenous microbes), thereby enhancing effects of the co-administered fructan.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3