Author:
Chen Xiaojuan,Deng Huiwen
Abstract
It is not easy to find learning materials of interest quickly in the vast amount of online learning materials. The purpose of this study is to find students’ interests according to their learning behaviors in the network and to recommend related video learning materials. For the students who do not leave an evaluation record in the learning platform, the association rule algorithm in data mining is used to find out the videos that students are interested in and recommend them. For the students who have evaluation records in the platform, we use the collaborative filtering algorithm based on items in machine learning, and use the Pearson correlation coefficient method to find highly similar video materials, and then recommend the learning materials they are interested in. The two methods are used in different situations, and all students in the learning platform can get recommendation. Through the application, our methods can reduce the data search time, improve the stickiness of the platform, solve the problem of information overload, and meet the personalized needs of the learners.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献